YES 0.982 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/List.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule List
  ((nub :: [Bool ->  [Bool]) :: [Bool ->  [Bool])

module List where
  import qualified Maybe
import qualified Prelude

  nub :: Eq a => [a ->  [a]
nub l 
nub' l [] where 
nub' [] _ []
nub' (x : xsls 
 | x `elem` ls = 
nub' xs ls
 | otherwise = 
x : nub' xs (x : ls)


module Maybe where
  import qualified List
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule List
  ((nub :: [Bool ->  [Bool]) :: [Bool ->  [Bool])

module List where
  import qualified Maybe
import qualified Prelude

  nub :: Eq a => [a ->  [a]
nub l 
nub' l [] where 
nub' [] vw []
nub' (x : xsls 
 | x `elem` ls = 
nub' xs ls
 | otherwise = 
x : nub' xs (x : ls)


module Maybe where
  import qualified List
import qualified Prelude



Cond Reductions:
The following Function with conditions
nub' [] vw = []
nub' (x : xsls
 | x `elem` ls
 = nub' xs ls
 | otherwise
 = x : nub' xs (x : ls)

is transformed to
nub' [] vw = nub'3 [] vw
nub' (x : xsls = nub'2 (x : xsls

nub'1 x xs ls True = nub' xs ls
nub'1 x xs ls False = nub'0 x xs ls otherwise

nub'0 x xs ls True = x : nub' xs (x : ls)

nub'2 (x : xsls = nub'1 x xs ls (x `elem` ls)

nub'3 [] vw = []
nub'3 wv ww = nub'2 wv ww

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ LetRed

mainModule List
  ((nub :: [Bool ->  [Bool]) :: [Bool ->  [Bool])

module List where
  import qualified Maybe
import qualified Prelude

  nub :: Eq a => [a ->  [a]
nub l 
nub' l [] where 
nub' [] vw nub'3 [] vw
nub' (x : xsls nub'2 (x : xs) ls
nub'0 x xs ls True x : nub' xs (x : ls)
nub'1 x xs ls True nub' xs ls
nub'1 x xs ls False nub'0 x xs ls otherwise
nub'2 (x : xsls nub'1 x xs ls (x `elem` ls)
nub'3 [] vw []
nub'3 wv ww nub'2 wv ww


module Maybe where
  import qualified List
import qualified Prelude



Let/Where Reductions:
The bindings of the following Let/Where expression
nub' l []
where 
nub' [] vw = nub'3 [] vw
nub' (x : xsls = nub'2 (x : xsls
nub'0 x xs ls True = x : nub' xs (x : ls)
nub'1 x xs ls True = nub' xs ls
nub'1 x xs ls False = nub'0 x xs ls otherwise
nub'2 (x : xsls = nub'1 x xs ls (x `elem` ls)
nub'3 [] vw = []
nub'3 wv ww = nub'2 wv ww

are unpacked to the following functions on top level
nubNub'1 x xs ls True = nubNub' xs ls
nubNub'1 x xs ls False = nubNub'0 x xs ls otherwise

nubNub' [] vw = nubNub'3 [] vw
nubNub' (x : xsls = nubNub'2 (x : xsls

nubNub'2 (x : xsls = nubNub'1 x xs ls (x `elem` ls)

nubNub'3 [] vw = []
nubNub'3 wv ww = nubNub'2 wv ww

nubNub'0 x xs ls True = x : nubNub' xs (x : ls)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
HASKELL
              ↳ Narrow

mainModule List
  (nub :: [Bool ->  [Bool])

module List where
  import qualified Maybe
import qualified Prelude

  nub :: Eq a => [a ->  [a]
nub l nubNub' l []

  
nubNub' [] vw nubNub'3 [] vw
nubNub' (x : xsls nubNub'2 (x : xs) ls

  
nubNub'0 x xs ls True x : nubNub' xs (x : ls)

  
nubNub'1 x xs ls True nubNub' xs ls
nubNub'1 x xs ls False nubNub'0 x xs ls otherwise

  
nubNub'2 (x : xsls nubNub'1 x xs ls (x `elem` ls)

  
nubNub'3 [] vw []
nubNub'3 wv ww nubNub'2 wv ww


module Maybe where
  import qualified List
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_nubNub'(:(True, wx3111)) → new_nubNub'(wx3111)
new_nubNub'(:(False, wx3111)) → new_nubNub'(wx3111)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_nubNub'0(:(True, wx3111)) → new_nubNub'0(wx3111)
new_nubNub'0(:(False, wx3111)) → new_nubNub'0(wx3111)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_nubNub'1(:(True, wx311), True) → new_nubNub'1(wx311, True)
new_nubNub'1(:(False, wx311), False) → new_nubNub'1(wx311, False)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
QDP
                          ↳ QDPSizeChangeProof
                        ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_nubNub'1(:(False, wx311), False) → new_nubNub'1(wx311, False)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ LetRed
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ DependencyGraphProof
                      ↳ AND
                        ↳ QDP
QDP
                          ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_nubNub'1(:(True, wx311), True) → new_nubNub'1(wx311, True)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: